
Journal of Mathematical Chemistry 10(1992)57-91 57 

SELF-CONSISTENT, NONORTHOGONAL GROUP FUNCTION 
APPROXIMATION: AN AB INITIO APPROACH FOR MODELLING 
INTERACTING FRAGMENTS AND ENVIRONMENTAL EFFECTS 

E m e s t  L. M E H L E R  

Department of Structural Biology, Biocenter of the University of Basel, CH-4056 Basel, 
Switzerland and Department of Physiology and Biophysics, Mount Sinai School of Medicine, 
CUNY, New York, NY 10029, USA 

This paper is dedicated to Dr. Bess-Gene Holt, whose untimely 
death was a sad reminder to the author that our knowledge is 
still far from complete. Dr. Holt was a close friend whose insights 
and philosophy served as a strong guide to the development of 
the author's moral and philosophical views during his graduate 
student career at Iowa State University, Ames, Iowa. 

Abstract 

The reformulation of the single determinantal, closed shell wavefunction into an 
antisymmetrized product of nonorthogonal group functions (NOGF) is reviewed. It is shown 
that by introducing the idea of a "reciprocal" group function, i.e. a group function defined 
as a product of reciprocal orbitals, the resulting expressions for one- and two-electron 
operators are formally identical with the equations obtained using strong-orthogonal group 
functions. Orbital equations are given for the NOGF wavefunction which are derived by 
formulating a variation principle in terms of group energy functionals, where the presence 
of the other groups is expressed in terms of Coulomb and exchange operators in the group's 
Hamiltonian. To ensure that the group's orbitals do not violate the Pauli exclusion principle, 
a coupling or screening operator is introduced into the variational equations. The effectiveness 
of the coupling operator is discussed and it is demonstrated that it fully screens the group's 
orbitals from collapsing or distorting into forbidden regions of function space. To provide 
techniques for modelling and analyzing intermolecular interactions, the procedure for calculating 
the NGOF wavefunction can be reformulated into a series of steps which allows the components 
of the interaction energy, i.e. Coulomb, exchange, polarization and charge transfer, to be 
evaluated. This approach leads to considerable simplification and reduces the computational 
effort required to determine the wavefunction. The decomposition is used to analyze many- 
body effects in linear water chains and a model of a helical hydrogen bonding. The basis 
set superposition error (BSSE) in the NOGF approximation is discussed and methods for 
its evaluation are given, and it is shown that the BSSE is inherently less in the NOGF 
wavefunction than in the corresponding HF-SCF wavefunction. In the final parts of the 
paper, additional methods are given which further reduce computation time when both 
interacting fragments and their immediate environment must be considered at the quantum 
chemical level. These techniques are then applied to a study of the effect of environment 
on ion pair formation and proton transfer. The results of these studies demonstrate the 
remarkably strong modulating effect of molecules hydrogen bonded to the interacting pair. 
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1. Introduction 

The single determinantal Hartree-Fock self-consistent field wavefunction 
(HF-SCF) has for the last thirty years been the basis for an overwhelming majority 
of applications and developments in quantum chemistry. The picture of molecular 
electronic structure it provides in the form of molecular orbital theory has been 
fruitful both qualitatively and quantitatively in many areas of chemistry and has 
strongly influenced most chemists in the way they describe the results of their 
investigations [1,2]. At the same time, HF-SCF theory has been the starting point 
of nearly all methods which seek to extend the accuracy of the wavefunction to 
yield a quantitative description of molecular structure, or to extend the range of 
applicability to larger systems. 

Traditionally, the main thrust of research in the development of all-electron 
ab initio methods has been to extend the accurary of the HF-SCF approximation by 
introducing various techniques for handling electron correlation [3-6]. To extend 
the range of applicability to larger systems, there have been numerous improvements 
and refinements, both in integral evaluation and solution of the HF-SCF 
equations [7, 8], but primary reliance has been placed on the continuing development 
in computational hardware and the associated enormous increase in computing 
speed over the last twenty years. This has allowed ab initio quantum chemistry to 
be applied to many systems using quite good basis sets, albeit in some cases the 
computational effort becomes very large. However, the recent, rapid increase in the 
availability of high resolution protein structures has raised new challenges for 
theoretical chemistry, as well as other theoretical approaches [9-11],  since these 
systems are substantially larger and have other requirements than those ordinarily 
trcated by ab initio quantum chemical methods. 

Theoretical studies of protein chemistry, enzymatic reaction mechanisms, 
l igand-protein interactions and other molecular aggregations often are focussed on 
the interactions of a few (active) fragments (AF) embedded in an environment. To 
include the environmental effects, it has been suggested to divide the system into 
three regions [12]: I: a quantum motif which includes the interacting moiety; II: the 
remaining protein; and III: the bulk solvent. In this model, regions II and III are 
treated using classical electrostatics which is incorporated into the Hamiltonian of 
the quantum motif [13-  16]. 

To provide a proper theoretical description of protein structure and function, 
it is essential that the noncovalent interactions be represented at least as accurately 
as the covalent ones. This requirement and the necessity to be able to incorporate 
environmental effects is most easily met by ab initio molecular orbital theory, but 
because of the computational demands the quantum motif usually has to be reduced 
to the simplest possible model, and in many cases the basis sets must also be very 
small. Thus all the environmental description and its modulation of the interactions 
of the active fragments is relegated to regions II and III. An implicit assumption 
of this model is that the electronic overlap between region I and regions II and III 
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Fig. 1. Schematic representation for dividing protein and its 
environment into different motifs. Ia: Quantum motif containing 
active fragments; Ib: Quantum motif of nearest-neighbor 
fragments; II: Discrete electrostatic motif of remaining protein 
atoms; III: Continuum electrostatic motif of bulk solvent. 

is essentially zero; an assumption which is not valid for those fragments which are 
the nearest neighbors of the AFs. A more satisfactory approach would be to also 
treat the nearest neighbors at the quantum chemical level which would modify the 
three-region model as shown in fig. 1. Here, regions II and III are as previously but 
region I has been split into two subregions, Ia for the active fragments and Ib for 
the nearest-neighbor fragments (NNF). 

Naturally, the extension of region I to Ia and Ib will enlarge the quantum 
motif, and to be able to describe at least region Ia with reasonably accurate basis 
sets it is necessary to look for some simplifications of the HF-SCF approximation. 
Although the rate at which the number of integrals which have to be calculated 
formally increases with the fourth power of the number of basis functions, M, for 
larger aggregates the rate of increase is much slower with a lower limit of M 2 In M 
[17,18]. The SCF step continues to increase, however, and eventually becomes 
computationally dominant so that it is reasonable to look here for further approximations. 

A characteristic of the systems of interest here is that they can be divided into 
interacting subgroups which, because the interactions are primarily noncovalent, 
retain their chemical identity to a large degree. This feature suggests that a group 
function formulation of the single determinantal wavefunction may lead to the 
desired simplifications. This approach has a long history and has been used primarily 
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to simplify the calculation of correlated wavefunctions [19]. However, an Ansatz 
applicable to larger molecular aggregates was proposed some time ago [20] and it 
was shown that the inherent rate of increase of the method was cubic. The Ansatz 
is characterized by two approximations: First, the orthogonality restriction between 
orbitals belonging to different groups is relaxed, and second, the variational requirement 
of making the total energy stationary is replaced by a set of variational conditions 
which are used to make appropriately defined group energy functionals stationary. 
It was argued that in particular this latter approximation was required to achieve 
further economy, but it implied that the total energy obtained from the resulting 
wavefunction was not necessarily stationary. Nevertheless, a number of applications 
have shown that quantities like the interaction energy calculated with this approximation 
are only negligibly differcnt from the corresponding results obtained with the standard 
SCF method using the same basis sets [21-24]. Because the wavefunction is constructed 
from a product of nonorthogonal groups, the method has been referred to as the self- 
consistent, nonorthogonal group function (NOGF) approximation. 

Recently a new, more efficient program has been developed using the NOGF 
method, and a number of additional techniques were proposed to further decrease 
computation time [25]. These additional approximations are based on using simplified 
descriptions of the fragments belonging to region Ib in fig. 1, and/or removing them 
from the variational process. In this way, it is possible to realize further reductions 
in computing time and the rate at which the calculation increases with system size. 

In this paper, a somewhat more general derivation of the method is given and 
some of its basic features and several applications are reviewed. A more detailed 
analysis of basis set errors in the NOGF approximation is presented and it is shown 
that the basis set superposition error (BSSE) in the NOGF wavefunction has a 
reduced distorting effect on interaction potentials and is inherently less than the 
BSSE in the standard SCF wavefunction constructed from the same basis. Finally, 
results are presented on a number of model systems which illustrate how NNFs 
modulate ion pair formation and proton transfers. 

2. Formulation 

2.1. NONORTHOGONAL GROUP WAVEFUNCTIONS, HAMILTONIAN AND ENERGY 

The application of the NOGF approximation has been limited to closed shell 
systems in which each fragment also is assumed to be in closed shell form. Since 
these assumptions lead to the simplest form of the equations and most clearly 
exhibit the salient features of this method, only closed shell structures are considered 
here. The extension of the method to open shell or unrestricted cases is straightforward 
provided the wavefunction is expressible as a single determinant. Cases which 
require a linear superposition of determinants have not yet been considered. 

For a system of T interacting fragments, define a fragment or group wavefunction 
of the form 
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~R(I ,2  . . . . .  2NR) = A[URI(1)U'RI(2)...U'RNR(2NR) (2.1) 

for group R, where the URr are space orbitals with a spin and the u,~, with fl spin. 
Thus, q~R is a single-determinantal wavefunction made up of doubly occupied orbitals 
For the whole system, define an approximate wavefunction of  the form 

T 

h u = A'I~q~R(2N(R_I ) ~- 1, 2N(R-1) + 2 . . . . .  2N(R)), (2.2) 
R=I 

where 
R 

N(R) = E Ns 
S=l 

and A '  is a partial antisymmetrizer which only exchanges electrons between groups. 
Orthonormality is imposed within a group, but not between groups, thus 

and 
(URrlURr') = ~rr' (2.3a) 

<URr l USs) = SRr.S s. (2.3b) 

It is useful to define reciprocal orbitals for the u, i.e., 

1 ) =  u S  -1 ' (2.4) 

where the elements of S are defined by eq. (2.3). From eq. (2.4), it is obvious that 
u t v =  I, that is, (URr[VS,)= ~SRr, S s, showing that u and v are related as an ortho- 
normal basis. There are no special orthogonality relations between the OR, but now 
consider the "reciprocal" group defined by 

¢'R = A [ VR~, v ~ l . . .  V~NR ]. (2.5) 

One then finds that 

~ O R ( 1 . . . ) ~ s ( 1 . . . ) d r  l = 0 R V S. (2.6) 

Thus, • and ~ are related as if they were strong-orthogonal. Norbert and 
McWeeny [26] have shown that the reciprocal orbital basis can be used to simplify 
the energy expression in valence bond theory, and eq. (2.6) suggests that this should 
be the case with nonorthogonal group functions as well. 

The Hamiltonian can be written in the form 

where 

H= y~HR+ ~_,gR(S)+ VN, 
R R 

(2.7) 

1 ~ g ( R r ,  Rr'), (2.8a) 5t{R = ~ h(Rr) + -~ 
r r~r ~ 
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gR(S) = y ,  ~ g(Rr, Ss), (2.8b) 
r S[*RIs 

and g(i,j) = 1/rij; h(i) is the one-electron part of the Hamiltonian and Vu is the total 
nuclear repulsion energy which can also be partitioned into one-group and two- 
group terms. 

The expectation value of the total energy is given by 

E = (q ' lHlh°)  (2.9) 
(,elSe) 

To evaluate E, it is noted that the reciprocal orbitals are defined in terms of the 
occupied orbitals only. Therefore, replacing the u by v in ~g changes the wavefunction 
by at most a phase factor, and by carrying out this replacement for, say, I h°) in eq. 
(2.9), eq. (2.6) shows that E can be evaluated as if the groups were strong-orthogonal. 
Inserting eqs. (2.7) and (2.8) into eq. (2.9), one obtains 

where 

and 

1 1 E = ~.~ {<~R IHR I~R) + ~ (~R~S IgR(S)I~R~S) + -~ VR}, 
R 

(2.10) 

VR= ~., ~.ZRpZsa/RRp,Sa (2.11) 
p So 

gR(S) = ~ ~g(Rr ,  Ss)(1-PRr,Ss). (2.12) 
r Ss 

In eq. (2.11) Rp and So" refer to the nuclear positions in fragments R and S, 
respectively, and in eq. (2.12) ~ , , s ,  is a permutation operator interchanging particles 
between Rr and Ss. From eq. (2.10), it is seen that the total energy can be expressed 
as a sum of group energies, i.e., 

E= ~_.ER (2.13) 
R 

and ER can be further expanded to give 

1 ER "~ 2 £ <URr IhlURr) + ~ (2(URrUSs lUR~USs) - (URrUSs lUSsURr)) + 5 VR. (2.14) 
r rSs 

In the above formulation, the total energy is obtained as an exact sum of 
group energy quantities [27]. An alternative form is obtained by considering the 
electrons of a given fragment moving in the average field generated by the electrons 
and nuclei of the other fragments [28,29]. For the group R, one writes 

E'k = (~RIHRleOR) + ~ (eOR~slgR(S)I~R~S) + V[~, (2.15) 
S(~R) 
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where 

1 vk = ZRpZRp' / RRp,Rp" + ZRpZso / RRp.So 
pp" pS( , R )er 

= 1 VR R + VR S 2 (2.16) 

and E is then given by 

1 
E = Y~Ek - 7 ~ { (~e~s  IgR(S)I~R~S) + VRS}. (2.17) 

R S(~R) 

As a result of the strong orthogonality-like relationship in eq. (2.6), the 
energy formulas given in eqs. (2.10) and (2.17) are structurally identical with those 
obtained for strong-orthogonal groups [28,29]. Moreover, when ER is expanded in 
orbital form, eq. (2.14), the resulting expression for the total energy is formally 
identical with the standard expression obtained for the single-determinantal 
wavefunction of a closed shell system using orthonormal orbitals. Since the system's 
density matrix is given by 

p = 2~[Uss)(Vss I, (2.18) 
Ss 

the only extra computation required to evaluate E is the calculation and inversion 
of S, which is trivial. 

2.2. GROUP ENERGIES AND VARIATIONAL PROCEDURES 

The wave function defined in eq. (2.2) is, of course, just the closed shell 
Hartree-Fock wavefunction written in a modified form. The fact that nonorthogonal 
functions have been used does not make it more or less general. Although it is 
possible to proceed by making E stationary, this would not yield anything new since 
the resulting orbital equations just would be the HF-SCF equations in a more 
complicated form. This approach has been studied by various authors [30-37] to 
obtain orbitals in a specialized form, but in most cases it has proven to be more 
practical to solve the canonical HF-SCF equations and then transform the orbitals 
to the desired form. It is clear, therefore, that to obtain simpler orbital equations 
the requirement that E be stationary has to be relaxed which can be accomplished 
by modifying the standard variational procedure. 

The relaxation of the intergroup orthogonality constraints allows each group 
to be considered independently with its electrons moving in an average field generated 
by the electrons of the other groups. This consideration suggests that an appropriate 
group energy functional should be similar in form to E,~ given in eq. (2.15). However, 
since we are considering the groups as independent entities, the energy functional 
is defined by 
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'ER = (OR I -q/'R IOR) / (~R It~R), (2.19) 

where 5kC R is an effective Hamiltonian defined by 

and 

5L{R = Z hR (/)eft -I- Z g(i, j )  (2.20) 
i i<j 

hR(1)eff = h(1) + Z [2Jss(1) - Kss(1)], (2.21) 
S(~R)s 

where fl and Kare the Coulomb and exchange operators, respectively [20], Both the 
Coulomb and exchange operators are required in hReff since intergroup orbital overlaps 
are not zero. From eqs. (2.1), (2.3a), (2.20) and (2.21), one obtains 

E R = 2~_,(URr IheRf lURr) + ~ [(URr 12JRr'- KRr' lum)]. (2.22) 
?" FF 

In the case of strongly orthogonal group functions, 5E R and E~ would be 
identical and the total energy would be given by eq. (2.17) [28]. However, here ~:R 
is expressed in terms of the local group density matrices 

pR = 2 ~ l URr) (URr I, (2.23) 
r 

and since 

Dp = p _ ~ p S  ¢: O, (2.24) 
s 

it is usually not possible to express the total energy in terms of the E R. Moreover, 
making the E R stationary no longer guarantees that E is stationary except when the 
groups have been made strong orthogonal by, say, construction, symmetry, etc. 
Since in the latter case stationary 5E R would yield the HF-SCF solution, giving a 
well-defined basis of comparison, it seems reasonable to obtain the orbital equations 
from the variational condition 6 E R = 0 for R = 1, 2 . . . . .  T. 

The general problem of making a functional stationary in a restricted subspace 
has been discussed elsewhere [38,39], and in the context of strongly orthogonal 
group functions by McWeeny [28,29]. In the present case, it is required to make 
~E R stationary with respect to the lUR,), which in general will only span a part of 
Hilbert space. Moreover, if the groups are strong-orthogonal the wavefunction will 
automatically satisfy the Pauli principle, provided that the groups are constrained 
to remain strong-orthogonal when optimized. Here the groups are not strong-orthogonal, 
and their variation has to be constrained in such a way that the Pauli principle is 
not violated between electrons belonging to different groups. This can be accomplished 
by requiring the intergroup orbital overlaps (URrlus,) to remain constant while the 
orbitals of the Rth group are varied. In addition, it is required that intragroup 
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orthonormality be conserved. The complete variational problem may be expressed 
as follows: 

S Z  R = 0, (2.25a) 

~(URr lUR~') = 0 (2.25b) 
and 

6[(UR~IUs~) + (Us~IUR~)] = 0 {lUss), (S ~: R), constant}. (2.25c) 

Both sets of constraints can be incorporated into the variational problem by the 
usual method of  Lagrangian multipliers. One obtains 

FRIURr) =~A,  Ss,RrlUss) R = 1,2 . . . . .  T, (2.26) 
Ss 

where 

FR = heRff + Z 2 flRr - KRr. 
r 

On multiplying both sides of eq. (2.26) by (Vssl, one obtains 

(2.27) 

~Ss,Rr = < l)Ssl FRlURr), (2.28a) 

but for group S, one gets 

;t R~,Ss = ( vR~ I y s lus~ ). (2.28b) 

If the orbitals had been chosen orthonormal, and therefore the groups strong-orthogonal, 
one would have S = I and thus I Vgr) = l UR~), from which it obviously follows that 

A,R~,ss = 2ss, R~, (2.29) 

showing that eqs. (2.26) would yield the standard HF solution. However, for the 
nonorthogonal case, eq. (2.29) does not hold so that it is not possible to find an 
orthogonal transformation which makes all the off-diagonal elements of  A. vanish 
simultaneously. Alternatively, it is possible to express A. in terms of a coupling 
operator [31] by multiplying both sides of eq. (2.28a) by l uss) and then summing 
over all groups and orbitals to give 

~ [lUss) < Vss I f R I]IURr) = ~ /ZSs,R~ lUs~). 
Ss Ss 

(2.30) 

The term Eluss><Vssl is a general projection operator [38] and the term in square 
brackets is a coupling or screening operator. Substituting the 1.h.s. of  eq. (2.30) and 
its Hermitian extension into eq. (2.26), and at the same time adding the term 
;~Rr, n, lURr) (--eRrlURr)) tO both sides of eq. (2.26), one obtains 
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GRlURr) = enrlun~) R = 1,2 . . . . .  T, (2.31) 

where 

G R = 2 F R - ~ ( l u s , ) (  Us, I F R + Fnlvss )  (us~ l) 
Ss 

+ ~ lURr" ) (1)Rr' I F R lURr" ) (URr" I. (2.32) 
?." 

The variational procedure developed here has reduced the standard Fock 
matrix to a block-diagonal form where the dimensionality of each block is dependent 
on NR. The form of the screening operator introduced in eq. (2.32), i.e., p F +  Fp, 
is essentially that first proposed by Gilbert [32,33], whereas Adams [30,31] used 
a different form, O FP, to derive his localized orbital equations. Both these operators 
screen the group from the environment, but it is clear that the latter form is more 
complex than the former. In particular, from eq. (2.18) it is easy to show that 
construction of the elements of p F +  Fp requires at most two-electron integrals 
which couple three groups, whereas p Fp also requires two-electron integrals coupling 
four groups. Both of these operators provide full screening of the group Fock 
operator F ~. Other approaches which have been used to simplify the Adams-  
Gilbert equations result in a reduced screening, e.g., pR FRpn, but these are generally 
not sufficient [41,42]. 

2.3. BASIS EXPANSIONS AND PROGRAM STRUCTURE 

To solve the NOGF equations, the orbitals are expanded in a basis 

MR 

URr = Z ~'RpCRp, Rr' (2.33) 
p=l 

where MR is the number of basis functions used in the expansion of the orbitals of 
group R. Due to the relaxation of the orthogonality constraints between groups, 
Mn < M, where M is the total number of basis functions. The formulation of the 
NOGF approximation allows the basis functions to be distributed between the 
groups in an arbitrary way, although some distributions will be chemically more 
meaningful than others. 

The reciprocal orbitals are defined by 

M 

l)Ss = ~.~ Zsodsmss, (2.34) 
So=l 

where 

dsa.Rr = ~_~ Csa,ss (S -1 )Ss,Rr. (2.35) 
s 
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With these definitions, the groups' and system's density matrices are written as 

pR = 2cRcR~ (2.36) 
and 

/9 = 2C dt. (2.37) 

C R is a square M R x M R matrix of the group's expansion coefficients, but both C 
and d are square M x M matrices where the structure of C is block diagonal [20]. 
Using eqs. (2.36) and (2.37), the NOGF equations can be developed in matrix form. 
This has recently been done elsewhere and the reader is referred there for the 
details [25]. 

The orbital equations (2.31) define two levels of iteration, namely an intragroup 
level where a given group is brought to self-consistency in the fixed field of the 
other groups, and an intergroup level which brings the whole system to self-consistency. 
Examination of the structure of G R shows that the electron-interaction integrals 
which appear in the equations can be classed in four types (RRIRR), (RSIRR), 
(RR IAA) , and (RSIAA) [25]. Since only integrals coupling up to three groups are 
required for solving eqs. (2.31), the rate of increase of computational effort for 
solving the SCF equations reduces from a quartic to a cubic dependence. During 
an intragroup iteration only the first two types need to be updated at each iteration 
step, whereas for intergroup iterations all four types have to be updated. Considerable 
economy can therefore be achieved by constructing the computational algorithm to 
allow for both levels of iteration. 

In constructing the coupling operator, it was necessry to use the complete 
projection operator, i.e. p, which then required the use of a level shift operator to 
be able to recover the orbital eigenvalues. However, as noted above, )~ is not 
Hermitian and there is no assurance that the canonical orbitals are obtained. To do 
so would in general require a complex transformation to diagonalize ~R. Inspection 
of the off-diagonal elements of &R shows, however, that the non-Hermiticity is not 
very great and in order to restrict the program to real arithmetic, only the Hermitian 
part of &R is diagonalized. It should also be noted that the validity of Koopman's 
theorem [43] for the NGOF wavefunction has not been established. 

2.4. EFFICACY OF THE COUPLING OPERATOR 

The capacity of the coupling operator to screen the group from the environment 
is crucial to obtain wavefunctions with a proper structure. In addition to preventing 
variational collapse or distortion by keeping a group's occupied orbitals from moving 
into forbidden regions of function space, the coupling operator will tend to localize 
the group's orbitals. As will be seen below, this localization permits a decomposition 
of intermolecular interaction quantities to be developed which exploits the group 
product structure of the wavefunction, and allows the introduction of a number of 
additional approximations which help to reduce the computation for larger aggregates. 
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The effectiveness of the coupling operator can be better appreciated by a 
simple example. Calculations were performed on the linear HF dimer [44], and 
Huzinaga's (9s, 5p) basis was used for fluorine and his (4s) basis for hydrogen [45]. 
This primitive atomic basis was contracted to a double zeta orbital basis using 
Dunning's contraction coefficients [46]. The experimental HF separation of  1.03/~, 
was used [47]. Calculations were carded out at three intermolecular distances to 
determine the minimum and interaction energy. 

Table 1 

Group structure for linear F1-HI--F2-H 2. 

Group Basis 

1 FI: ls, 2s 
2 F2: ls, 2s 
3a Fx: 3s, 4s 
3b Fl: lz, 2z; Hi: ls, 2s; F2: 3s, 4s 
3c F2: lz, 2z; H2: ls, 2s 
4 I:1: Ix, 2x; F2: Ix, 2x 
5 Fl: ly, 2y; F2: ly, 2y 

Table 1 gives the assignments of the orbitals to the groups. The inner shells 
of FI and F 2 are assigned to groups 1 and 2, respectively. Group 3 comprises the 
cr part of the valence shell, while groups 4 and 5 are occupied by the ~r electrons. 
Due to symmetry, groups 4 and 5 are strong-orthogonal to each other and to the 
cr groups, and do not have to be included in the coupling operator. Wavefunctions 
with three different group product structures were considered: 

~A = A'[(I)123(1)4(I~5 ], 

~B = A'[tl)I(I)2(I)3t~4(I)5 ], 

~I~c = A'[t~l(I)2tl)3a(I)3b~3c~4~ 5 ]. 

(2.38) 

WA is jUSt the standard HF-SCF wavefunction, while in Wa the F ls cores have been 
separated from the valence shell electrons. Wc is similar to q'a, but the valence shell 
has been further split as given in table 1. The additional decomposition of the 
valence shell in Wc further localizes the H-bonding region of the dimer. 

The results of the calculations are summarized in table 2, where a number 
of properties are compared. Examination of the orbital energies of Wa and Wc shows 
that they are all close to the values obtained from q'a. Especially for ~rl,2 the 
differences are only about 0.25 eV. It is also seen that the errors in Wc'S orbital 
energies are somewhat larger than those from 'lJa. Comparison of the dipole moment, 
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Table 2 

Comparison of properties from different wavefunctions and couplings. 

Wa) A B B "b) C C "c) 

't'R.r - E  ~R., - e  - e  '~R., - e  - e  

o.l,1 26.3419 o.2,1 26.3323 26.1686 o.2,1 26.3200 26.3089 
o.1,2 26.2504 o.1,1 26.2416 26.1966 o.1,1 26.2581 26.7569 
ffl,3 1.6556 if3,1 1.6351 5.8797 o.3b,1 1.5727 2.1357 
61,4 1.5653 o.3,2 1.5457 5.7980 o.3a,1 1.5049 1.8207 
O'1,5 0.8309 t73,3 0.8215 0.7381 O'3c,1 0.8296 0.7926 
O'1,6 0.7081 o.3,4 0.6981 0.6697 o.3b,2 0.7608 1.5982 
:rl,1 0.6995 ~r4,1 0.6902 0.5581 ~4,1 0.6759 0.9677 
7rl,2 0.6086 tr5,1 0.6000 0.5314 ~5,1 0.6129 0.6426 

- E  200.0427 199.9006 195.8807 
# 1.9836 1.9848 - 0.3706 
Rc 5.44 5.44 
-AE 6.15 6.52 

a)Group product structure, see eq. (2.38) in text; properties in atomic units 
b)Structure as B, but screening operator excluded. 
c)Structure as C, but screening partially excluded (see text). 

199.8743 ~ 198.3292 
2.0128 0.4315 

5.48 
5.41 

except AE in kcal/mole. 

equilibrium separation and interaction energy obtained with vdB and Wc shows that 
these quantities are in good agreement with the HF-SCF results. It appears, therefore, 
that the screening provided by the coupling operator is adequate to prevent any type 
of variational distortion in the group wavefunctions WB and ~F c. 

To see this more clearly, the wavefunctions WB' and Wc' have the same 
structure as WB and q'c, respectively, but the coupling between one or more groups 
has been turned off. In WB', the coupling operator has been completely excluded and 
it is clear from the orbital energy values of 63,  1 and cr3,2 that they are trying to 
mimic the cores of F~ and F 2. The other orbitals are also distorted, the total energy 
is much too high and the dipole moment is completely incorrect. Comparison of WB' 
with WB provides a dramatic illustration of the necessity of screening in this type 
of formulation. Although the distortions seen in Wc" are smaller than in huB', they 
are still considerable. Here, only the coupling between groups 3b and 3a has been 
eliminated when 3b was being varied. 3b describes the hydrogen bonding interaction 
and it is clear that both e3b,~ and e3b,2 are much too low. Other valence shell orbital 
energies also show large errors. Thus, the wavefunction is again distorted as indicated 
by the values of the total energy and dipole moment. The latter, although better than 
the result calculated from Wc' is still far away from the HF-SCF value. It is clear 
from these latter results that not only variational collapse into the inner shell leads 
to problems, but that any kind of variational distortion yields wavefunctions which 
are seriously in error. 
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3. Modelling intermolecular interactions 

A group product structure of the wavefunction is particularly suitable for the 
study of noncovalent interactions because in these types of systems the interacting 
fragments are not too strongly perturbed from the structures of the isolated subsystems 
and therefore retain their chemical identity. It is then also straightforward to set up 
the structure of the wavefunction since the groups are most naturally based on all 
wavefunctions of the corresponding isolated fragments. The group operator G R 
(eq. (2.32)) does not contain any explicit localization terms, thus the degree of 
localization of any group's orbitals is controlled by the definition of the basis 
expansion (eq. (2.33)), which only has to span a part of basis space, and the 
coupling operator. In the previous section, it has been shown that the latter is 
sufficient for keeping the groups localized in their own proper subspaces. The 
relaxation of the orthogonality constraints provides additional flexibility for constructing 
the NOGF wavefunction since the orbitals no longer have to span the entire space. 
This added degree of freedom allows a natural decomposition of the interaction 
energy to be derived, and makes possible the implementation of further approximations 
which result in additional computational economy with only a small or negligible 
loss in the quality of the wavefunction. 

3.1. DECOMPOSITION OF THE INTERACTION ENERGY 

We now associate the T group functions with an aggregate of T noncovalently 
interacting fragments. For each isolated subsystem, the single determinantal 
wavefunction ~° R has been determined with energy EoR= <(b°lHoRl~°), where H0 R 
is the Hamiltonian of the isolated system. The orbitals are given by 

MR 
C O u°r =  zRp Rp,Rr. 

p=l 
(3.1) 

Now construct the wavefunction 

v ,  = (3.2) 

Since trtJ 1 is constructed from the unperturbed orbitals of the isolated subsystems, 
the quantity 

T 

AEc+Ex = E1-  ,~, ~ (3.3) 
S=I 

yields the Coulomb and exchange contributions to the interaction energy. In eq. (3.3), 
E1 is the total energy calculated from W1. From the Hartree group product, i.e., 
W o - - [ ~ o ~ o . . . ~ o ] ,  one can calculate the Coulombic contribution explicitly. It is 
easily shown [21] that both electrostatic and exchange contributions calculated from 
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the NOGF wavefunction are exactly identical with Morokuma's definition of this 
quantity [48]. The NOGF orbital equations (2.31) are now solved for the unperturbed 
orbitals of q'l to obtain 

~IJ2 = A ' [ O I O 2 . .  , O T ] .  (3 .4 )  

The group orbitals of ~F 2 are still expanded in the basis of the isolated subsystem, 
and have the form 

occ vir 
URr = EUOr ' aRr',Rr + E UORr ' bRr',Rr" (3 .5)  

r "  r n 

Therefore, q'2 also includes the polarization of each group's charge distribution 
induced by the other groups, and the polarization energy is evaluated from 

AEpol = E2 - El. (3.6) 

In the final step of this decomposition, the orbitals are expanded in the form 

occ vir 
Ui = E nOr , aRr',i + E nOr , bRr',i' (3.7) 

Rr' Rr' 

and the standard HF-SCF wavefunction 

~IJ3 = qbl,2,_.,T (3.8) 

is formed which now also includes the charge transfer effects. The charge transfer 
(CT) contribution is obtained from 

AEcT = E3-  E2, (3.9) 

and the total interaction energy is given by 

A E  = AEc+  zx  + AEpol + a E c r  = E3 - (3 .10)  

The decomposition of the NOGF wavefunction is similar but not identical 
with the decomposition of the HF-SCF wavefunction developed by Morokuma [48] 
and others [49,50]. The difference is due to the fact that with the NOGF wavefunction 
the induction effects can also be obtained from a fully antisymmetrized wavefunction. 
The earlier decompositions of the HF-SCF wavefunction used a Hartree product for 
calculating the polarization [51 ] and then passed directly to the final wavefunction 
(eq. (3.8)), which yielded a quantity comprising the charge transfer contribution and 
all other higher-order terms. By an appropriate analysis of the Fock matrix, Morokuma 
succeeded in decomposing this last term into three terms, i.e., charge transfer, 
exchange-polarization and mixing [48]. 
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It was shown by a perturbation analysis of the orbitals of W2 [21] that the 
first-order contribution (Coulombic and exchange) obtained from the NOGF 
wavefunction is identical with the Coulomb and exchange energy obtained from the 
HF-SCF wavefunction. The second-order term, however, is different. Besides the 
polarization energy obtained from the Hartree product [51 ], the exchange-polarization 
(expl) contribution is also included. This comes about because W2 is fully 
antisymmetrized. In addition, the screening operator also contributes a term which 
is repulsive and partially compensates the expl contribution. This latter term is an 
interaction between the virtual orbitals of the Rth group and the occupied orbitals 
of the other groups and is therefore part of the polarization interaction. It vanishes 
if the orbitals become orthogonal. 

T ab l e  3 

C o m p a r i s o n  o f  N O G F  and H F - S C F  ene rgy  d e c o m p o s i t i o n  

(H20)2 ") (HF)2 a) 

In te rac t ion  b) N O G F  H F - S C F  c) N O G F  H F - S C F  d) 

C + EX - 4 . 8  - 4 . 8  - 4 . 1  - 4 . 1  

Pol - 0.7 - 0.5 - 0.5 - 0.3 

C T  - 2.2 - 2.1 - 2.9 - 2.9 

E X P L  + M I X  - 0.3 - 0.2 

AE - 7.7 - 7.7 - 7.5 - 7.5 

a ) R ( O - O )  = 2.98/~,; R ( F - F )  = 2 .79 /~ ,  see  ref.  [21]; ene rgy  in kca l /mole .  

b)C: e lectrosta t ic ;  EX: exchange ;  Pol: polar iza t ion;  CT:  cha rge  t ransfer ;  

EXPL:  exchange -po la r i za t ion ,  ref .  [48]; MIX:  m i x i n g ,  ref. [48]. 
c) Ref .  [48]. 

d) Ref .  [54]. 

Table 3 summarizes the results of applying the NOGF decomposition to 
the water and HF dimers [21] and compares it with the results obtained from 
the HF-SCF wavefunctions using Morokuma's extended approach [48]; 4-31G 
bases [52] and identical geometries were used for the calculations. The result of the 
differences in the definition of the polarization wavefunction is that the polarization 
contribution obtained from the NOGF decomposition is lower than the HF-SCF 
value. However, the NOGF charge transfer is practically identical with the value 
obtained from the HF-SCF calculation using Morokuma's extended definition [48]. 
In the NOGF approximation, a natural decomposition is obtained, where each 
intermediate component  is calculated from a properly ant isymmetrized 
wavefunction. Moreover, all the polarization terms are accounted for by W2 
so that AEcr contains only charge transfer and the very small remaining higher- 
order mixing terms. 
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3.2. CHARGE TRANSFER IN THE NOGF APPROXIMATION 

Since the decomposition scheme given above ends with the standard HF-SCF 
wavefunction, all interactions describable with a single determinantal wavefunction 
are accounted for. However, for application to large molecular aggregates this is not 
particularly useful since to complete the analysis the HF-SCF wavefunction is 
required. Of course, one could simply stop with the polarization wavefunction hu2 
and neglect the charge transfer contribution. However, this is not really acceptable 
since many applications have shown that CT makes an important contribution to the 
interaction energy [21,53,54] as well as to other properties. 

A way to proceed is suggested from the fact that CT is a fairly rapidly 
decreasing function of interfragment separation, and involves primarily groups with 
nonzero overlap. As discussed by Morokuma [48], charge transfer can be interpreted 
as a delocalization which is realized by mixing the occupied space of one fragment 
with the virtual space of another. The group orbitals defined by eq. (3.5)cannot do 
this since they only include the intragroup occupied and virtual spaces. Thus, in 
order to give a group access to the virtual space of another group, its orbital 
expansions need to be extended to include at least part of the basis space of any 
group with which CT can occur. These orbitals are therefore expanded in the form 

MR 
U~r = EXRpCRp,Rr "1" E Xs(rCscr, Rr' (3.11) 

p=l S(~R)a 

where the superscript "e" denotes that the orbital's expansion has been extended. 
In eq. (3.11), the first term is as above and just includes the entire basis space of 
the fragment R, but the second sum includes basis functions from other groups. 
Naturally, it will be advantageous to keep the second sum as short as possible to 
save computing time. 

For hydrogen bonding it turns out that the situation is especially simple, since 
it has been found that a complete accounting of CT effects is obtained by including 
the H-bonding proton's atomic basis in the proton acceptor's (PA) as well as in the 
proton donor's (PD) basis. Thus, only the PA's  orbitals have to be extended. The 
NOGF wavefunction for an H-bonded dimer is h u = .W[~AOt,  o] and a comparison 
of the CT contribution for several dimers [21] is given in the first two columns of 
table 4. The calculated difference in the CT energy obtained from eq. (3.9) and 
using extended orbitals in the PA's  group function is about 0.7 kcal/mole except 
for HNC-HF, where it is substantially larger. However, the CT term is always 
contaminated with a BSSE, and its value will not be the same in the two types of 
wavefunction used in the calculations listed in table 4. 

3.3. BSSE IN THE NOGF APPROXIMATION 

In the supermolecule approach to studying molecular interactions, the BSSE 
is a well-known artifact arising from the requirement that finite bases have to be 
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Table 4 

Comparison of CT energy contributions of H-bonded dimers. 

Dimer ECT ") E~.T ") A b) Corr ECT c) Corr E~T e) A b) 

(H20 ~ 2.2 1.5 0.7 0.8 0.7 0.1 
(HF) 2 2.9 2.1 0.8 1.0 1.0 0.0 

H ~ - H F  2.5 1.9 0.6 1.3 1.4 -0 .1  
HCN-HF 1.9 1.1 0.8 0.7 0.7 0.0 

HNC-HF 4.1 2.3 1.8 1.3 1.0 0.3 

") Energy in kcal/mole; unprimed quantity from eq. (3.9); primed quantity uses extended 
group orbitals, eq. (3.11). 

b) A = Ecr - E~rr. 
c) Corrected for BSSE. 

used for actual calculations [55]. Several proposals have been made for calculating 
the "true" BSSE [56, 57], but because of its computational simplicity, the technique 
originally proposed by Boys and Bernardi [58] remains the most commonly used 
approach. Moreover, recent studies seem to indicate that it is the most reliable 
correction available [59,60]. In this method, the correction is calculated for each 
isolated fragment from the difference 

AEBssE = '.'Eo(fragment in supermolecule bas i s ) -  'F-.o. (3.12a) 

The correction is calculated for each fragment and then summed to give the total 
BSSE contribution. 

The counterpoise technique can also be used to correct the interaction energy 
calculated from the NOGF wavefunction, but the method has to be slightly modified. 
The BSSE will only be present in groups which use extended orbitals and only those 
basis functions are included which actually appear in the group's orbital expansion. 
In the H-bonding case, therefore, only PAs have to be considered [21]. The correction 
is defined by 

AE~ssE = Eo(fragment + proton's basis) - E0. (3.12b) 

Comparing eq. (3.12b) with eq. (3.12a) shows that in the NOGF approximation, the 
correction can never be greater than when using the standard wavefunction. The 
BSSE correction has been applied to the CT energy of the five dimers given 
in table 4, and the results are listed in the last three columns. From the difference 
between the corrected Ec-r and E~-r, it is clear that the total interaction energy 
calculated with the extended groups wavefunction does not differ appreciably from 
the value obtained with the HF-SCF calculation. 

To explore the behavior of the BSSE in more detail, the interaction potentials 
of  H C O O H - N H  3 and HCOO--HNH~ have been obtained from both the NOGF and 
HF-SCF wavefunctions. The calculations were carried out with Roos-Siegbahn 
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(7s ,3p)  a tomic  basis sets which  were contracted to double-ze ta  (DZ) molecu la r  

bases [61], a 4s basis contracted to DZ for hyd rogen  [46] and rigid f ragment  
geometr ies  [25]. The opt imal  energies and separat ions are g iven in table 5. It is seen 

that for  both neutral  pairs (NP) and charged pairs (CP), the BSSE corrected results 

are essential ly identical. In addition, the differences be tween the corrected and 

Table 5 

Effect of BSSE on the interaction potential. 

NH3HCOOH 

tlS Rmi a (A) Emi ~ (kcal/mole) 

2 grps 2.76 - 14.8 
2 grps + BSSE 2.77 - 13.0 
HF-SCF 2.71 - 16.5 
HF-SCF + BSSE 2.78 - 13.1 

NH~OOCH- 

2 grps 2.50 - 134.4 
2 grps +BSSE 2.51 - 129.0 
HF-SCF 2.47 - 139.7 
Hf-SCF + BSSE 2.51 - 131.4 

10 

8 
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Fig. 2. Basis set superposition error as a function of interfragment separation of ammonia- 
forrnic acid. O SCF:HCOO-HNH~; [] 2grpNOGF:HCOO-HNH~'; OSCF:HCOOHNH3; 

A 2 grp NOGF:HCOOHNH 3. 
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uncorrected potentials are smaller when calculated using the NOGF approximation 
than when using the standard SCF method. Thus, for the former the difference in 
the optimal separation is only 0.01 /~, whereas the latter gives differences of 0.07/~, 
and 0.04 A for the NP and CP, respectively. This behavior was already noted earlier 
in a comparison of the NOGF and HF-SCF interaction potentials of the water 
dimer [21 ]. The reason for the decreased effect of the BSSE on the NOGF interaction 
potential can be seen in fig. 2, where the BSSE correction has been plotted as a 
function of distance for both NP and CP. The BSSE effect is smaller, but in 
addition, the curves are much flatter so that they shift the potential curves somewhat 
on the energy axis but do not alter the slopes, and hence the minimum position is 
also not appreciably changed. In contrast, the BSSE correction curve calculated 
with the HF-SCF wavefunction has a larger slope and therefore distorts the potential 
more. Finally, it is worthwhile to note that the BSSE correction is easier to calculate 
in the NOGF approximation since AE~ssE is obtained from a smaller HF-SCF 
problem than AEnssE. 

3.4. MANY-BODY EFFECTS 

Many-body effects which cannot be fully described by effective, additive pair 
potentials are of considerable importance in the study of condensed phases. Recent 
studies have shown that they can be significant in determining the relative stability 
of closely related configurations of solvation shells [62] and for the reliability of 
Monte Carlo or molecular dynamics simulations [63]. Thus, in a recent simulation 
[64] to calculate the dielectric constant of water using the MCY potential [65], it 
was suggested that the large error in the theoretical value was at least partially due 
to the lack of proper accounting of nonadditivity effects by this potential. Moreover, 
it was suggested that reparametrization alone would probably not be sufficient [64]. 

Although there is general agreement that these effects will ultimately have 
to be included in the potential functions used in computer simulations, at present 
their functional form and relative importance have not been extensively studied. In 
terms of the energy decomposition given above, the exchange, induction and charge 
transfer effects are all nonadditive [66]. Of these, only the induction can be described 
with the help of classical electrostatic theory, while both exchange and charge 
transfer are quantum effects, although the short range of the exchange interaction 
often leads to very small three- and higher-body contributions (see below). To study 
many-body effects, the interaction potential is decomposed in the form [67] 

U(rl,r2 . . . . .  rn) = ~z~U(1)(r~) +~U(Z)(r~,rj) + . . .  (3.13) 
i i<j 

and the interaction energy is now AE = U -  ]~U 0). 
The NOGF approximation is particularly well suited for analyzing many- 

body effects. To effect the decomposition of U to, say, the m-mer level, one computes 
the NOGF wavefunction for m groups and subsequently all the/-mers  (l < m) which 
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can be constructed from the m-mer. Since the geometry is kept frozen for this 
process, the two-electron integrals need to be calculated only once for the m-met, 
and then for each / -mer  the corresponding set of integrals can be extracted from the 
m-mer 's  list, thus making the decomposition fairly economical. 

A trimer of formamide modelling main chain a helical H-bonding [23] was 
studied using a wavefunction of the form 

KIrl t e e 
= ffi [ C ~ i f ~ i + 3 ~ i + 6 ]  , (3.14) 

where the group function subscripts denote the peptide positions in the a helix 
which are H-bonded [68]. The calculations were carried out with minimum basis 
(MB) sets [69]. The results of the energy decomposition are summarized in table 6. 

Table 6 

Energy decomposition of nonadditivity effects a). 

Formamide Water 

- E - E - U (3) - E - E U c3) U (3 + 4) 

i, i + 3 i, i + 3, i + 6 (H20) 2 (H20 h 

C + E X  2.2 5.0 0 . ~  2.6 6.0 0.11 0.06 

Pol 0.9 2.4 0.6 1.4 3.6 0.7 0.3 

C~ 1.7 3.6 0.2 2.1 4.7 0.4 0.1 

AE 4.8 10.9 0.8 6.2 14.3 1.2 0.5 

Polar i za t ion  and  reac t ion  f i e l d  ef fects  

Pol(i) 0.29 0.34 0.05 

Pol(i + 3) 0.51 1.16 0.35 

Pol(i + 6) 0.58 0.07 

0.81 2.07 0.47 

Pol 0.89 2.35 0.57 

a)Energy in kcal/mole; see text for definitions of quantities. 

The main three-body contribution comes from the induction and comprises about 
25% of the total polarization energy, and the CT contribution to U (3) is about 8% 
of the total CT contribution. Note also that the small C + EX contribution is due 
to exchange interactions since the electrostatic component is pair additive. 

The group product structure of the NOGF wavefunction allows for a further 
decomposition of the polarization (or charge transfer) effects into a primary and 
secondary contribution. The former corresponds to the polarization of a group in 
the field of the remaining unperturbed groups, whereas the latter is the group's 
response due to the polarization of its neighbors and is thus analogous to the 
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reaction field [70]. The primary effect for any group is calculated by solving the 
NOGF-SCF eqs. (2.31) for the group in the field of the other unperturbed groups. 
The wavefunction is 

%(R) = A ' [ ¢ ° . . . ¢ R . . . ¢ o ] ,  (3.15) 

from which Epol(R) can be calculated. Table 6 lists these quantities for the dimer 
and trimer of formamide, and the contribution to U (3). Not surprisingly, the i + 3 
fragment makes the largest contribution in the trimer and yields the largest three- 
body effect. Moreover, the secondary "reaction field" effects contribute an additional 
10% tO Epo I in both dimer and trimer, but about 20% to U (3). 

The convergence behavior of the many-body contribution was studied in an 
ice-like chain of five water molecules [22] using 4-31G basis sets [52]. The results 
are also summarized in table 6. Overall, the behavior here is similar to the formamide 
case. U (3) consists of  only nearest-neighbor three-body terms, whereas the remaining 
three- and four-body terms are summed together in the column U (3 + 4) The ordering 
of the contributions to U (3) is (in magnitude) Pol > c r  >> C + EX, which is different 
than for U (2) where it usually is C + EX > C~ > Pol. The total contribution to U (3 + 4) 
is about half again as much as U (3) and about half comes from the remaining three- 
body interactions and half from all the four-body interactions. From the results of  
this analysis, it is possible to extrapolate to infinite chain length and a value of  
-9 .4  kcal/mole H-bond was obtained, which is to be compared with a value 
of -7 .4  kcal/mole H-bond if only pair interactions are considered [22]. Thus, in the 
present model, higher-order effects enhance the interaction energy by about 20%, 
but it must be added that other systems have been studied where these effects are 
repulsive [71]. 

3.5. FURTHER APPROXIMATIONS FOR THE REGION Ib 

Due to the nonvanishing overlaps between the fragments in regions Ia and 
Ib (fig. 1), all the intermolecular effects derived from the energy decomposition 
will, in principle, influence the way that the molecular fragments in region Ib 
modulate the interactions in region Ia. However, the Ib charge distributions are not 
directly involved in the interactions under consideration in systems represented by 
fig. 1, nor are they the targets of  any chemical changes occurring in region Ia. Thus, 
it does not seem unreasonable to expect that these nearest neighbors of the active 
part of the system can be treated at a more approximate level than the charge 
distributions in region Ia. 

Two features ot' the NOGF approximation have been used to formulate models 
where the NNF are treated more approximately than the AF. First is the effectiveness 
of  the screening operator to keep the charge density of each group localized in its 
own proper subspace. This suggests that if bases of different quality are used for 
expanding the orbitals of the groups, the screening operator will prevent any distortion 
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in the wavefunction. Thus, the NNF can be expanded with smaller bases than the 
AF. Second, the structure of  the orbital equations (2.31) allows each group to be 
optimized independently in the effective field of  the other groups. It is therefore 
possible to predetermine the orbitals of  some groups, e.g., the NNF, in a smaller 
subsystem and then transfer these orbitals to the system of  interest, where they are 
held frozen, i.e., their orbitals are not modified by the iterative procedure. Finally, 
it can be assumed that in some cases it is not necessary to include all the interactions 
between NNF and AF to describe the modulating effect of  the former. In these latter 
cases the NNF's  groups are not extended but only the Coulombic, exchange and 
polarization interactions are incorporated. To show that different basis sets are used, 
the previous notation for the wavefunctions is modified to 

q' = .q ' [cba~zB.. .~T x ] -- [I :A,2:B . . . . .  T:K], (3.16) 

where A, B . . . .  refer to the groups' basis sets. Finally, the notation is further 
simplified as given by the r.h.s, of eq. (3.16). 

To fix these ideas more firmly, consider the effect of  using mixed basis sets 
to calculate the effect of hydration on the protonation energy (PE) of  formate, 
ammonia, guanidine (GD) and imidazole (IMI) [25]. In this example, the water 
molecules are considered as NNF and two are H-bonded to each AF. Standard 
supermolecule calculations were carried out using the 4-31G basis [52] and 
GaussS0 [60]. A mixed basis was formed, where the acid and bases are described 
by a DZ basis constructed from (7s,3p) [61] atomic bases and a (4s) basis [46] for 
hydrogen, and an MB basis [69] for the waters. An example of  the geometric 
arrangement of  the waters around the AF is given in fig. 3 for the acid and ammonia 
for the neutral and ionized species. The geometries of  the isolated fragments and 
complexes have been given elsewhere [25]. For the calculations discussed here, 
each A F - N N F  cluster is treated as an isolated system, but their interactions will 
be considered below. 

To account for all the interactions, extended groups have to be used for the 
PAs, which in the case of  formate is the acid, but for the bases the waters are the 
PAs. Thus, for NH3, NH~, IMI, IMIH +, GD and GDH +, the wavefunction for the 
mixed basis is 

~P = [AF : DZ, H20  : eMB, H20 : eMB], (3.17a) 

but for the acid, the wavefunction is 

q" = [AF : eDZ, H20 : MB, H20 : MB]. (3.17b) 

In constructing the orbitals for the extended groups, care must be taken that the 
same level of  approximation is used for all the basis functions. Thus, in eq. (3.17a) 
the proton's  basis is included with the waters at the MB level, but in eq. (3.17b) 
the proton is described at the DZ level. 
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Fig. 3. Conformation and interfragment geometries of 
ammonia-formic acid complex. A: neutral pair; B: charged 
pair. For additional geometric details, see ref. [25]. 

First the PEs of  the isolated species using the 4-31G or DZ basis sets were 
calculated with a one-group wavefunction, and subsequently the hydrated complexes 
were determined using the three-group wavefunctions of  eqs. (3.17). Table 7 shows 
the shift in PE upon hydration of  the isolated species as calculated with standard 
HF-SCF wavefunctions and the mixed basis, three-group wavefunction. The shifts 
differ by 1 kcal/mole or less, showing that the three-group wavefunction using the 
mixed basis set responds as effectively to hydration as the standard single-determinantal 
wavefunction. 

To assess the other approximations, the subsystem 2(H20)HCOO- and N H ]  
are used to set up an interacting system where the formate and ammonium are in 
a double H-bonded configuration [25]. In this system, the waters are considered as 
NNF which modulate the H-bonding interaction between the formate and ammonium 
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Table  7 

Shifts  in protonat ion  energies  due  to hydra t ion  m). 

APEb) APEb~ 
Molecu le  

4 -31G DZ/MB 

2 ( H 2 0 ) H C O O -  28.3 27.2 

2 (H20)NH 3 - 44.4 - 44.3 

2(HzO)GD - 29.0 - 28.6 

2(H20)IMI  - 25.3 - 24.9 

i )Energies  in kcal /mole.  
blAPE = P E ( c o m p l e x )  - PE( i so la t ed  molecule) .  

ions. The interactions between the AFs are always fully represented, thus the basis 
from the two protons from ammonium which H-bond to the formate are included 
in the latter's orbital expansions. If the CT effect between the waters and formate 
is also included, the wavefunction has the form 

= [NH]: DZ, HCOO-: eDZ, H20 :A,H/O :A], 

but if they are to be omitted, one has 

(3.18a) 

q' = [NH]" DZ, HCOO-: DZ, H20 :A, H20 :A]. (3.18b) 

Note that in eq. (3.18a), "e" refers only to the CT interaction between water and 
formate. For this system, the interaction potential has been calculated for both the 
aI1-DZ basis (A = DZ) and the mixed basis (A = MB). The wavefunctions defined 
in eqs. (3.18a) and (3.18b) are denoted by "CT" and "Pol", respectively. 

If the NNF's orbitals are to be kept frozen during the optimization of  the 
AFs' orbitals, they must be determined from a suitable subsystem prior to starting 
the calculation. One possibility is to take them from the isolated H20 wavefunction, 
and this case is designated by F. Alternatively, one can determine these orbitals 
from the subsystem 2(H20)HCOO-, excluding or including CT, and they are then 
designated by F'  and F", respectively. 

The interaction potentials for these different options are summarized in 
table 8. In these calculations the 4-group, fully optimized, CT wavefunction is used 
as the reference. This is fully justified from the discussions of previous sections and 
results reported elsewhere [21-25].  It is clear from table 8 that the DZ/DZ and 
DZ/MB CT; CT; F ' ;  and C~, F" wavefunctions all give essentially the same results. 
However, for locating the minimum, one can first use the Pol, F '  wavefunction and 
subsequently use the CF, F '  wavefunction to calculate the interaction energy and 
final value O f R m i  n. The reduction in computing time realized by these approximations 
lies between about 25% and 75% of the full CT calculation, depending upon which 
wavefunction is being used. The HF-SFC calculation for this system requires about 
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Table 8 

Minimum distances and interaction energies. 

DZ/DZ DZ/MB 

Rmm ~ AAEmm ~ Rmm ~ AAEmm ~ 

CT 2.867 0.0 2.859 - 1.0 
CT,F' 2.863 - 0.1 2.860 - 0.8 
CT,F" 2.864 0.3 2.861 - 0.5 
CT, F 2.854 - 3.7 2.854 - 3.4 
Pol 2.845 - 4.6 2.843 - 5.5 
Pol, F' 2.846 - 4.7 2.844 - 5.5 
Pol,F 2.837 - 8.5 2.837 - 8.2 

a) Rmin is the C-N distance at the minimum in/~; see ref. [25] for 
geometries. 

b) AAEmin is the energy difference relative to the interaction energy 
of CT in kcal/mole. 

60 -70% of the CT wavefunction in the current version of the program, which has 
not been fully optimized. Moreover, for the reasons discussed in the previous 
section, the NOGF approximation will become increasingly economial relative to 
standard methods with increasing system size. 

3.6. EFFECTS OF ENVIRONMENT ON ION PAIR FORMATION AND PROTON TRANSFER 

Ion pair formation is of  fundamental importance in controlling the structure 
and function of  enzymes. Such pairs contribute significantly to protein stability [73] 
and the proton transfer reactions between these pairs are involved in innumerable 
enzymatic reactions. Both experimental [74-76] and theoretical studies [77,78] 
have suggested that these types of  interactions are subtly modulated by the nearest 
environment, so it should not be surprising that even the simplest models are rich 
in insight. The question to be addressed here is how the interaction potential of  an 
interacting pair in the charged and uncharged states is influenced by hydrogen 
bonding of  the pair's fragments to neighboring molecules, and which components 
of  the interaction are the main source of the changes. 

The model consists of  a formic acid interacting with ammonia. Each fragment 
is H-bonded to water molecules, as shown in fig. 3. Calculations were carried out 
for the CP (fig. 3A) and the NP (fig. 3B), and four systems were considered, i.e., 
the isolated pairs, the pairs with two waters bound to either the acid or the base, 
and the pairs with four bound waters. The quantity of  interest is the energy change 
of  the reaction 

A H - B  = A - - B H  +, (3.19) 

where 
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AE = E(A ~- BH +) - E ( A H -  B), (3.20) 

which is just the energy change obtained from changing the neutral pair to a charged 
pair. It is convenient to consider the reaction (3.19) as part of  a closed cycle 

AE 
A H - B  = A - - H B  + 

AEAB II II AEA-B* 

A H + B  = A - + B H  + 
APE 

(3.21) 

From eq. (3.21), it is seen that AE can also be expressed as 

AE = AEA-B+ + APE - AEAB 

= AEA-B+ (net)-- AEAB. 

(3.20')  

(3 .20-)  

The first and third terms on the r.h.s, of  eq. (3.20') are just the stabilization energies 
of  the CP and NP, while APE is the difference in the protonation energies between 
the two fragments, i.e. PE(BH +) - PE(AH), and can be regarded as the work required 
to charge the two fragments at infinite separation. In eq. (3.20"), the CP's interaction 
energy and APE have been combined to give the net stabilization energy of the CP. 
This is convenient because AEA-B+(net) and AEAB now refer to the same value of 
zero on an energy scale. 

The reaction cycle (3.21) is written for the isolated pair. One can also consider 
the pair embedded in an environment S, for which the reaction cycle takes the form 

AE s 

S ( A H - B )  = S (A- -HB +) 

AESB II II AES-B + (3.22 

S A H + S B  = S A - + S B H  ÷ 
ApE s 

and 

A e s  = zxes_B+ + APE s - AesB 

= AES_B+ (net) - AESB . 

(3.23') 

(3.23 '3 

Thus, from the reaction cycles (3.21) and (3.22) it is possible to express the energy 
of  ion pair formation in terms of  the pair's stabilization energy and the self energy 
as expressed by APE. 

In the calculations, the formic acid and ammonia are the AFs of  region Ia 
(fig. 1) and the waters are NNF belonging to region Ib and designated by "S" in 
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the notation of eqs. (3.22) and (3.23), 2-, 4-, or 6-group wavefunctions are constructed, 
depending on the number of  water molecules included. The wavefunction structure 
is similar to that described above (eqs. (3.16) and (3.17)) with the water orbitals 
expanded at the MB [69] level and the AF with a DZ [61] basis. In all cases, the 
NNF orbitals are frozen, and the orbitals of  the waters H-bonded to the acid were 
determined from a Pol- tyt~ wavefunction for the fo rmate -2 (H20)  fragment, but for 
reasons discussed elsewhere [25], the orbitals of  the waters H-bonded to ammonia 
were obtained from the wavefunction of  the fragment ammonia -2 (H20)  including 
CT. The geometries of  the fragments are as in the previous section and are kept 
fixed while the fo rmate -ammonia  distance is varied (R in fig. 3), and finally each 
N N F - A F  fragment is moved as a rigid body. 

Fig. 4. Interaction potentials for hydrated ammonia-formic 
acid complex. Ionized pair, solid curves; neutral pair, dashed 
curves. O AB; [] 2SAB; ~, AB2S; A 2SAB2S; S = H20, 

A = HCOOH(HCOO-); B = NH3(NH~). 

The potential curves of the CP and NP in the different degrees of  hydration 
are shown in fig. 4. The water molecules affect both NP and CP in the same way 
in that the potential curves are lowered with increasing hydration. However,  the 
effect is much stronger for the CP than the NP. This results in a large change in 
the relative energies of  the CP and NP, which is about 20 kcal/mole favoring the 
isolated pair, but has been reduced to about 3 kcal/mole for the pair hydrated with 
four waters. Similar results are found for two other models of  ion pair interactions: 
For formic acid-his t idine the isolated CP lies 17 kcal/mole above the NP, but for 
the pair hydrated with four waters the former is 3 kcal/mole below the latter [79]. 
The formic-guanidine  pair behaves in the same way, but for this pair the CP lies 
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below the NP even for the isolated case [79]. Thus, hydration changes the relative 
energy from - 4  to - 2 0  kcal/mole. 

The minimum value of R as well as the energy quantities defined by the 
reaction cycles (3.21) and (3.22) are given in table 9. It is of interest to note that 
the minimum separation decreases in the NP, but increases in the CP with increasing 
hydration. As already seen from fig. 4, AEAB decreases by about 7.5 kcal/mole on 

T ab l e  9 

In te rac t ion  potent ia l  for hydra t ed  f o r m a t e - a m m o n i a .  

S y s t e m  a) 
NP C P  

R m AEAB R m AEA-B÷ APE ,flEA-a. (net) AE b) 

AB 2.76 - 14.7 2.49 - 134.4 141.6 7 .2  21.9 

2 S A B  2.72 - 17.7 2.53 - 115.4 117.0 1.6 19.3 

A B 2 S  2.73 - 18.3 2.58 - 107.1 98 .0  - 9.1 9 .2  

2 S A B 2 S  2.68 - 22.3 2.62 - 92.4 73.4 - 19.0 3.3 

a)A = H C O O H ;  B = NH3; S = H20 ;  ene rg ies  in kca l /mole .  

b ) A E =  AEA_a,(net)  - AEAB. 

hydration with four H 2 0 .  However, A E A - B +  increases with hydration. Thus, the H- 
bonded waters destabilize the CP with respect to the hydrated, isolated charged 
fragments. The shift is about 45 kcal/mole, but opposed to this is the change in 
APE, which decreases by about 70 kcal/mole. The net effect, therefore, is that 
hydration stabilizes the CP by about 26 kcal/mole, which is about 3.5 times greater 
than the stabilizing effect on the NP. Moreover, this effect is due to the presence 
of only four water molecules in the immediate neighborhood of the interacting pair. 
The effect of bulk solvent has not been included in the calculation. 

The above analysis has been carried out by considering the effects of H- 
bonded interactions on the pairs' binding energies and the self energies of the 
charged fragments. The results clearly indicate that the latter quantity determines 
the relative shifts in stability of the CP and NP. This is not unexpected, but what 
is perhaps surprising is the size of the shift caused by only two waters H-bonded 
to each fragment. There is, however, another point of view which suggests that the 
relevant quantity is the change in energy resulting from the transfer of the pair from 
one solvent to another [80,81]. In the present case, this "transfer" is from the gas 
phase (vacuum) to the hydrated phase (pair interacting with H-bonded waters). This 
process can also be represented by an interaction cycle, i.e., 

AE s 

S(AH-B) = S(A--HB +) 

ASSAB II II ASS-B * (3.24) 

S + A H - B  = S + A - - B H  + 
AE 
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and AE s is calculated from 

A E  S --- A E  + ~ A _ B  + - - A S A B  • (3.25) 

The quantities ASA-B+ and /~AB have also been calculated and are summarized in 
table 10. They correspond to the transfer described by the reaction cycle (3.24) and 
the values of ASAB and ~A-B + show that the interaction of the waters with the AFs 
stabilizes both the CP and the NP, but the former more than the latter. 

Tab le  10 

Effec t  o f  " so l va t i on"  ene rgy  on stabi l i ty a). 

AE  s AE ASAa ASA-B+ 

2S + AB ~-~ 2 S A B  19.3 22.0 - 13.7 - 16.4 

2S + AB ~ AB 2S  9.2 22.0 - 8.9 - 21.7 

4S + AB ~ 2 S A B 2 S  3.3 22.0 - 23.4 - 42.1 

a) Energies  in kcal /mole;  A = HC OOH,  B = NH3; S = H20;  quanti t ies def'med 

in eq. (3.24).  

The two viewpoints represented by reaction cycles (3.21) and (3.22) on the 
one hand, and (3.25) on the other, are complementary. Both exhibit the very large 
modulating effects originating in the interactions of AF with the nearest neighbors 
but emphasize different aspects. The former shows the key role of the self energy 
in stabilizing ion pairs, while the latter seems to be more instructive when comparing 
the transfer of an interacting pair from one environment to another, such as water 
to protein. In any case, the discussion and results of the last two sections indicate 
that with the NOGF approximation, it should be possible to give an adequate 
description of these types of interactions using models where both the active part 
of the system and its nearest neighbors are considered at the quantum mechanical 
level. 

The analysis developed in the previous section can also be used to study the 
effect of environmental hydrogen bonding on proton transfer (PT) potentials. A 
number of studies [82-85] have demonstrated that environmental effects can have 
a strong influence on the shape of proton transfer potentials, which is of particular 
importance in the analysis of enzymatic reactions. Models of the type used here are 
helpful in exhibiting the individual effects and in providing some insight into their 
relative importance. 

The model, basis sets and group structure of the wavefunction are the same 
as above (fig. 3) and the effects of two waters H-bonded to the acid and/or the base 
are considered. The PT potentials have been calculated with an N - O  distance of 
2.9/~, and the geometries of the acid, base and waters were not optimized at each 
point where the potential was calculated. Instead, two calculations are carried out, 
one using the NP geometry (fig. 3A) and the other using the CP geometry (fig. 3B). 
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The structure yielding the lowest energy at a given point is then used to approximate 
the potential at that point. This technique was shown to give quite reasonable 
results, and, of  course, saves considerable computing time [86]. 

15 

o 
E _ 

¢.9 
-5  -- 

v 

>- 
C9 
W~-15 
Z 
LLI 

-25 
0.8 

I ' I ~ I ' I ' I 

1 1.2 1.4 1.6 1.8 

m(o-m) (A) 
Fig. 5. Proton transfer potentials  for 
ammonia- formic  acid; symbols as in fig. 4. 

i 
2 

Table 11 

Minima and barrier maximum for proton transfer. 

A H _ B  ~) A _ H _ B  ~) A-_HB +~ 

System Rmin b) AE(NP)mi~ c) Rmax b) AEm~ d) Rmin b) AE(CP)min c) 

AB 1.00 30.2 1.59 29.5 1.76 0.7 
2SAB 1.01 27.6 1.63 24.8 1.80 2.8 
AB2S 1.01 22.2 1.47 12.7 1.83 9.5 
2SAB2S 1.02 18.7 1.49 5.0 1.84 13.7 

a)A = HCOOH; B = NH3; S = H20; energies in kcal/mole. 
b)R(O-H) in A. 

C)AE(i)min = Ema x - E(i)min; AEm~x = E(CP)m ~ - E(NP)m ~. 

The PT potentials for the four systems are plotted in fig. 5 and the values 
of  the minima and barrier heights are given in table 11. The energies are calculated 
as defined in the reaction cycles (3.21) and (3.22). Figure 5 shows that the curves 
move downward with increasing hydration, but as for the interaction potentials, the 
effect is much stronger on the CP side of  the reaction than on the NP side. 
The O - H  minimum distance increases slightly for the NP, but the H - N  optimal 
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distance decreases  by  near ly  0 .1 /~  in the CP with four  water  molecules .  Fur thermore ,  
the NP barr ier  decreases  by about  10 kcal /mole,  while the CP barrier,  which  is 
pract ical ly  zero for  the isolated pair, increases to near ly  14 kca l /mole  when  the pair  
is H-bonded  to four  waters. The  posi t ion o f  the bar r ie r ' s  m a x i m u m  shifts away f rom 
the AF which is hydra ted  and is substantial ly greater  for  hydra t ion  o f  the ammonia .  

Using the energy decomposi t ion scheme developed for the N O G F  approximation 
and eqs. (3.20) and (3.21), the energet ics  o f  the PT potential  at both  min imum 
values  have been decomposed  and the results are listed in table 12. As for  the 

Table 12 

Proton transfer energy decomposition a). 

ES APE ESne t EX CT + Pol AE AErie t 

A--HB + - 116.4 144.2 27.8 8.1 -20.8 - 129.1 15.1 
SA--HB + - 113.5 119.7 6.2 35,0 - 33.6 - 112.1 7.6 
A--HB+S - 111.8 100,9 - 10.9 29.5 - 23.4 - 105.7 - 4.8 
SA--HB+S -110.4 76.4 -34.0 56.4 -37,9 -91.9 -15.5 

AH-B - 17.3 9.6 - 6.8 - 14.5 
SAH-B - 19.3 15.2 - 13.1 - 17.2 
AH-BS -20.8 14,8 - 11.7 - 17.7 
SAH-BS - 23.1 20,4 - 18.4 - 21.1 

a)Energy in kcal/mole; ES = electrostatic energy; EX = exchange energy; CT + Pol = charge 
transfer + polarization; EX, CT + Pol is calculated for all interactions; S = 2H20. 

in teract ion potentials ,  hydra t ion destabi l izes  the CP side o f  the PT relat ive to the 
isolated, charged fragments .  This e f fec t  is pr imari ly  due to the large contr ibut ions  
to the EX energy  from each fragment ,  while the ES increases only  slightly. Again,  
APE determines  the response o f  the net interact ion energy  to the presence  o f  the 
NNF,  a l though the contr ibut ion  o f  C~ + Pol is also substantial  and favors hydrat ion.  
On the NP side o f  the PT,  the combined  ef fec t  o f  the ES and CT + Pol  is more  
stabil izing than the EX contr ibut ions  destabi l iz ing the interact ion,  which  results in 
the overal l  e f fec t  favor ing the addit ion o f  H-bonded  waters  to the AF. 

The  e f fec t  o f  four  waters H-bonded  to the f o r m a t e - a m m o n i a  pair  results in 
the creat ion o f  a substantial  barr ier  for  shift ing the proton from the CP side to the 
N P  side. It is c lear  from these results that changes  in H-bonding  pat terns be tween  
the AFs and N N F  can provoke  very  large changes  in the PT potent ia l  which  even  
seem to include the possibi l i ty o f  changing a single well to a double  well  potential .  
S ince  it has also been shown that changes in geomet ry  affect  the PT potent ia l  [87], 
it appears  that sys tems like enzymes  possess a number  o f  mechan i sms  whereby  
pro ton  t ransfer  react ions can be init iated and control led.  
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4. Conclusions 

The self-consistent, nonorthogonal group function approximation is an ab initio 
approach for calculating the electronic structure of large molecular aggregates. The 
formulation of the method as presented here is completely general, and thus applicable 
to any closed shell system. Since the orbital equations are derived by requiring that 
suitably defined group energy functionals are stationary rather than the total energy, 
the NOGF wavefunction is an approximation to the restricted HF-SCF wavefunction. 
However, the applications presented here have shown that for hydrogen-bonded 
systems, the results are negligibly different from the standard SCF results. Indeed, 
due to the partial accounting of the BSSE inherent in the NOGF wavefunction, 
calculated interaction energies (and other properties) are less distorted than the 
corresponding quantities obtained from the HF-SCF wavefunction. 

As discussed in the formulation, the structure of the orbital equations in the 
NOGF approximation implies a third power dependence of computational effort 
with system size. However, by using mixed basis sets and freezing groups it is 
further reduced, and for the hydrated ion pairs studied here lies between a linear 
and quadratic dependence [25]. It is clear, therefore, that NOGF theory would 
provide a practical approach for studying the effects of macromolecular environment 
on the electronic structure of active groups in enzymes. In addition, it may be 
feasible to implement the method in molecular dynamics calculations to calculate 
changes in the interaction potential "on the fly". 

For the future, a number of further developments are essential for the general 
applicability of the method. Some of these are further optimization of the current 
program and adaption to vector and parallel processing, extension to open shell 
systems, and incorporation of environmental effects from regions II and III in 
fig. 1. Some of these are currently being implemented, and their completion will 
result in a considerable extension in the types of problems which can be studied at 
the ab initio quantum chemical level. 
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